DFA examples

1. Design DFA for a L= {w | w ends with 1) over Σ={0,1}

DFA M1 is = (Q, Σ, δ, q0, F)

Where

  1. Q : {q1, q2}
  2. Σ : {0, 1}
  3. δ = Q × Σ -> Q =
    • δ(q1, 0) = q1
    • δ(q1, 1) = q2
    • δ(q2, 0) = q1
    • δ(q2, 1) = q2
  1. q0 : q1.
  2. F : {q2}

 

Note: The transition function can also be described with a transition table.

2. Design DFA for a L= {w | w has length 2) over Σ={a,b}

DFA M2 is = (Q, Σ, δ, q0, F)

Where

  1. Q : {q0, q1, q2,q3}
  2. Σ : {a, b}
  3. δ = Q × Σ -> Q =
    • δ(q0, a) = q1
    • δ(q0, b) = q1
    • δ(q1, a) = q2
    • δ(q1, b) = q2
    • δ(q2, a) = q3
    • δ(q2, b) = q3
    • δ(q3, a) = q3
    • δ(q3, b) = q3
    •  
  1. q0 : q0.
  2. F : {q2}

 

Note: The transition function can also be described with a transition table.

3. Design DFA for a L= {w | w has exactly 2 a's) over Σ={a,b}

DFA M3 is = (Q, Σ, δ, q0, F)

Where

  1. Q : {q0, q1, q2,q3}
  2. Σ : {a, b}
  3. δ = Q × Σ -> Q =
    • δ(q0, a) = q1
    • δ(q0, b) = q0
    • δ(q1, a) = q2
    • δ(q1, b) = q1
    • δ(q2, a) = q3
    • δ(q2, b) = q2
    • δ(q3, a) = q3
    • δ(q3, b) = q3
    •  
  1. q0 : q0.
  2. F : {q2}

 

Note: The transition function can also be described with a transition table.

4. Design DFA for a L= {w | w has even length) over Σ={0,1}

DFA M4 is = (Q, Σ, δ, q0, F)

Where

  1. Q : {q2, q3}
  2. Σ : {0, 1}
  3. δ = Q × Σ -> Q =
    • δ(q2, 0) = q3
    • δ(q2, 1) = q3
    • δ(q3, 0) = q2
    • δ(q3, 1) = q2
  1. q0 : q2.
  2. F : {q2}

 

Note: The transition function can also be described with a transition table.

5. Design DFA for a L= {w | number of 0's in w is even.) over Σ={0,1}

DFA M5 is = (Q, Σ, δ, q0, F)

Where

  1. Q : {q0, q1}
  2. Σ : {0, 1}
  3. δ = Q × Σ -> Q =
    • δ(q0, 0) = q1
    • δ(q0, 1) = q0
    • δ(q1, 0) = q0
    • δ(q1, 1) = q1
  1. q0 : q0.
  2. F : {q0}

 

Note: The transition function can also be described with a transition table.

6. Design DFA for a L= {w | w has length <= 2} over Σ={0,1}

DFA M6 is = (Q, Σ, δ, q0, F)

Where

  1. Q : {q0, q1, q2,q3}
  2. Σ : {a, b}
  3. δ = Q × Σ -> Q =
    • δ(q0, a) = q1
    • δ(q0, b) = q1
    • δ(q1, a) = q2
    • δ(q1, b) = q2
    • δ(q2, a) = q3
    • δ(q2, b) = q3
    • δ(q3, a) = q3
    • δ(q3, b) = q3
    •  
  1. q0 : q0.
  2. F : {q0,q1,q2}

 

Note: The transition function can also be described with a transition table.

7. Design DFA that accepts all strings with odd number of a's, over Σ = {a, b}

DFA M7 is = (Q, Σ, δ, q0, F)

Where

  1. Q : {q0, q1}
  2. Σ : {a, b}
  3. δ = Q × Σ -> Q =
    • δ(q0, a) = q1
    • δ(q0, b) = q0
    • δ(q1, a) = q0
    • δ(q1, b) = q1
  1. q0 : q0.
  2. F : {q1}

 Note: The transition function can also be described with a transition table.

8. Design DFA for a L= {w | w starts with ab) over Σ={a,b}

DFA M8 is = (Q, Σ, δ, q0, F)

Where

  1. Q : {q0, q1, q2,q3}
  2. Σ : {a, b}
  3. δ = Q × Σ -> Q =
    • δ(q0, a) = q1
    • δ(q0, b) = q3
    • δ(q1, a) = q3
    • δ(q1, b) = q2
    • δ(q2, a) = q2
    • δ(q2, b) = q2
    • δ(q3, a) = q3
    • δ(q3, b) = q3
      •  
  1. q0 : q0.
  2. F : {q2}

 

Note: The transition function can also be described with a transition table.

9. Design DFA for a L= {w | number of a's in w is less than or equal to two.) over Σ={a,b}

DFA M9 is = (Q, Σ, δ, q0, F)

Where

  1. Q : {q0, q1, q2,q3}
  2. Σ : {a, b}
  3. δ = Q × Σ -> Q =
    • δ(q0, a) = q1
    • δ(q0, b) = q0
    • δ(q1, a) = q2
    • δ(q1, b) = q1
    • δ(q2, a) = q3
    • δ(q2, b) = q2
    • δ(q3, a) = q3
    • δ(q3, b) = q3
  1. q0 : q0.
  2. F : {q0,q1,q2}

 

Note: The transition function can also be described with a transition table.

10. Design DFA for a L= {w | number of a's in w is greater than or equal to two.}

DFA M10 is = (Q, Σ, δ, q0, F)

Where

  1. Q : {q0, q1, q2}
  2. Σ : {0, 1}
  3. δ = Q × Σ -> Q =
    • δ(q0, 0) = q1
    • δ(q0, 1) = q0
    • δ(q1, 0) = q0
    • δ(q1, 1) = q1
  1. q0 : q0.
  2. F : {q0}

 

Note: The transition function can also be described with a transition table.

11. Design DFA for a language L= {w | length of w is multiple of 3) over Σ={a,b}

DFA M11 is = (Q, Σ, δ, q0, F)

Where

  1. Q : {q0, q1, q2}
  2. Σ : {a, b}
  3. δ = Q × Σ -> Q =
    • δ(q0, a) = q1
    • δ(q0, b) = q1
    • δ(q1, a) = q2
    • δ(q1, b) = q2
    • δ(q2, a) = q0
    • δ(q2, b) = q0
    •  
  1. q0 : q0.
  2. F : {q0}

 

Note: The transition function can also be described with a transition table.

12. Design DFA for a language L= {w | w is an empty string or a string that ends with 1) over Σ={0,1}

DFA M12 is = (Q, Σ, δ, q0, F)

Where

  1. Q : {q0, q1}
  2. Σ : {0, 1}
  3. δ = Q × Σ -> Q =
    • δ(q0, 0) = q0
    • δ(q0, 1) = q1
    • δ(q1, 0) = q0
    • δ(q1, 1) = q1
  1. q0 : q0.
  2. F : {q0}

 

Note: The transition function can also be described with a transition table.

13. Design DFA for a language L= {w | contains neither 00 nor 11) over Σ={0,1}

DFA M13 is = (Q, Σ, δ, q0, F)

Where

  1. Q : {q0, q1,q2,q3}
  2. Σ : {0, 1}
  3. δ = Q × Σ -> Q =
    • δ(q0, 0) = q2
    • δ(q0, 1) = q1
    • δ(q1, 0) = q2
    • δ(q1, 1) = q3
    • δ(q2, 0) = q3
    • δ(q2, 1) = q1
    • δ(q3, 0) = q3
    • δ(q3, 1) = q3
  1. q0 : q0.
  2. F : {q1.q2}

 

Note: The transition function can also be described with a transition table.

14. Design DFA that accepts odd binary numbers. over Σ={0,1}

DFA M14 is = (Q, Σ, δ, q0, F)

Where

  1. Q : {q0, q1,q2,q3}
  2. Σ : {0, 1}
  3. δ = Q × Σ -> Q =
    • δ(q0, 0) = q3
    • δ(q0, 1) = q1
    • δ(q1, 0) = q2
    • δ(q1, 1) = q1
    • δ(q2, 0) = q2
    • δ(q2, 1) = q1
    • δ(q3, 0) = q3
    • δ(q3, 1) = q3
  1. q0 : q0.
  2. F : {q1}

 

Note: The transition function can also be described with a transition table.

error: Content is protected !!