• Theory of Computation

 

  • Networking

 

  • Python Programming

 

  • Java Programming

 

  • Data Structures and Algorithms

 

  • What is Problem Solving

 

  • Data Analytics

 

  • Foundation of Data Science

 

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

Introduction to Problem Solving

Content

  1. Introduction
  • 1.1. What is Problem Solving?
  • 1.2. Problem-Solving Steps
  1. Algorithms
  • 2.1. Definition of an Algorithm
  • 2.2. Characteristics of Algorithms
  • 2.3. Examples of Algorithms
  • 2.4. Advantages and Limitations of Algorithms
  1. Flowcharts
  • 3.1. Definition of a Flowchart
  • 3.2. Flowchart Notations
  • 3.3. Examples of Flowcharts
  • 3.4. Advantages and Limitations of Flowcharts
  • 3.5. Comparison with Algorithms
  1. Pseudo-code
  • 4.1. Definition of Pseudo-code
  • 4.2. Notations Used in Pseudo-code
  • 4.3. Examples of Pseudo-code
  • 4.4. Advantages and Limitations of Pseudo-code 
  1. Introduction to Programming
  • 5.1 Programming as a tool for problem solving
  • 5.2 The role of programming languages
  • 5.3 The programming process:
  1. Programming Languages as Tools
  • 6.1. Programming Paradigms
  • 6.2. Types of Programming Languages
  • 6.3. Why Python?
  1. Converting Pseudo-code to Programs
  • 7.1. Step-by-step guide to converting pseudo-code into Python code
  • 7.2. Examples of converting pseudo-code to Python.
  • 7.3. Common mistakes and how to avoid them.